language-icon Old Web
English
Sign In

Vector Analysis and Vector Fields

2004 
A vector function of a scalar variable is a vector \( {\vec{\text{a}}} \) whose components are real functions of t: \( {\vec{\text{a}}} = {\vec{\text{a}}}(t) = a_{x} (t ) {\vec{\text{e}}}_{x} + a_{y} (t ) {\vec{\text{e}}}_{y} + a_{z} (t ) {\vec{\text{e}}}_{z} . \) The notions of limit, continuity, differentiability are defined componentwise for the vector \( {\vec{\text{a}}}(t) \).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []