Design of a 0.5 V 1.68mW nose-on-a-chip for rapid screen of chronic obstructive pulmonary disease

2016 
Chronic obstructive pulmonary disease (COPD) still lacks a rapid diagnosis strategy. In this paper, we propose a low-power nose-on-a-chip for rapid COPD screening. This chip is designed for implementation in a personal handheld device that detects patient breath for COPD diagnosis. The chip has 36 on-chip sensors, a 36-channel adaptive interface with an integrated programmable amplifier, a four-channel frequency readout interface, one on-chip temperature sensor, a two-channel successive approximation analog-to-digital converter, a scalable learning kernel cluster, and a reduced instruction set computing core with low-voltage static random-access memory. This chip is fabricated in 90 nm CMOS and consumes 1.68 mW at 0.5 V. In simulation, the system distinguished between undiseased and diseased patients with 90.82% accuracy for a set of diseases including COPD and asthma and exhibited 92.31% accuracy for identifying patients with COPD or asthma. The system classified severity levels of COPD under four labels (normal, mild, moderate, and severe) with 92.00% accuracy. Accordingly, this work provides a promising solution for the unmet medical need of rapid COPD screening.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    0
    Citations
    NaN
    KQI
    []