Comparison of three congruent patient-specific cell types for the modelling of a human genetic Schwann-cell disorder

2019 
Patient-specific human-induced pluripotent stem cells (hiPSCs) hold great promise for the modelling of genetic disorders. However, these cells display wide intra- and interindividual variations in gene expression, which makes distinguishing true-positive and false-positive phenotypes challenging. Data from hiPSC phenotypes and human embryonic stem cells (hESCs) harbouring the same disease mutation are also lacking. Here, we report a comparison of the molecular, cellular and functional characteristics of three congruent patient-specific cell types—hiPSCs, hESCs and direct-lineage-converted cells—derived from currently available differentiation and direct-reprogramming technologies for use in the modelling of Charcot−Marie−Tooth 1A, a human genetic Schwann-cell disorder featuring a 1.4 Mb chromosomal duplication. We find that the chemokines C−X−C motif ligand chemokine-1 (CXCL1) and macrophage chemoattractant protein-1 (MCP1) are commonly upregulated in all three congruent models and in clinical patient samples. The development of congruent models of a single genetic disease using somatic cells from a common patient will facilitate the search for convergent phenotypes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    8
    Citations
    NaN
    KQI
    []