The three dimensional cues-integrated-biomaterial potentiates differentiation of human mesenchymal stem cells

2018 
Abstract Alginate (Alg) hydrogels, the most popular natural biomaterials, mimic the extracellular matrix (ECM) microenvironment and offer potential biomedical applications. Despite their excellent properties such as biocompatibility, hydrophilicity and ionic crosslinking, the absence of an intrinsic cell adhesion domain lessens their cell-carrier applications in tissue engineering. Herein, we suggest a three-dimensional (3D) cell culture system by integrating Alg hydrogel and fibroblast-derived matrix (FDM). FDM including cell-adhesion motifs, signaling, and physico-mechanical cues is prepared by the decellularization process by avoiding unfavorable chemical reactions. This cues-integrated-biomaterials (CiB) 3D platform shows increased cell viability, proliferation, chondrogenic and osteogenic differentiation of human bone-marrow-derived mesenchymal stem cells (hMSCs) in situ . The results show that the Alg/FDM hydrogel (CiB) matrix provides an excellent microenvironment for cell adhesion and can control the differentiation of hMSCs into specific lineages. Thus, these results suggest the potential applications of the Alg/FDM hydrogel matrix as a viable 3D culture system for tissue regeneration.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    17
    Citations
    NaN
    KQI
    []