Rigidity for critical metrics of the volume functional

2019 
Geodesic balls in a simply connected space forms Sn, Rn or Hn are distinguished manifolds for comparison in bounded Riemannian geometry. In this paper we show that they have the maximum possible boundary volume among Miao–Tam critical metrics with connected boundary provided that the boundary of the manifold has a lower bound for the Ricci curvature. In the same spirit we also extend a rigidity theorem due to Boucher et al. and Shen to n‐dimensional static metrics with positive constant scalar curvature, which gives us a partial answer to the Cosmic no‐hair conjecture.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    16
    Citations
    NaN
    KQI
    []