A new multi-agent system to simulate the foraging behaviors of Physarum

2017 
Physarum Polycephalum is a unicellular and multi-headed slime mold, which can form high efficient networks connecting spatially separated food sources in the process of foraging. Such adaptive networks exhibit a unique characteristic in which network length and fault tolerance are appropriately balanced. Based on the biological observations, the foraging process of Physarum demonstrates two self-organized behaviors, i.e., search and contraction. In this paper, these two behaviors are captured in a multi-agent system. Two types of agents and three transition rules are designed to imitate the search and the contraction behaviors of Physarum based on the necessary and the sufficient conditions of a self-organized computational system. Some simulations of foraging process are used to investigate the characteristics of our system. Experimental results show that our system can autonomously search for food sources and then converge to a stable solution, which replicates the foraging process of Physarum. Specially, a case study of maze problem is used to estimate the path-finding ability of the foraging behaviors of Physarum. What's more, the model inspired by the foraging behaviors of Physarum is proposed to optimize meta-heuristic algorithms for solving optimization problems. Through comparing the optimized algorithms and the corresponding traditional algorithms, we have found that the optimization strategies have a higher computational performance than their corresponding traditional algorithms, which further justifies that the foraging behaviors of Physarum have a higher computational ability.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    17
    Citations
    NaN
    KQI
    []