A Terrain Relative Navigation sensor enabled by multi-core processing

2012 
Terrain Relative Navigation (TRN) provides accurate position estimates to spacecraft for precision planetary landing and autonomous primitive body exploration. A bolt-on instrument that provides the sensing and computing required for TRN will result in more accurate and robust position estimates and will simplify TRN validation. Multi-core processors provide the significant computational capability required for TRN, are straightforward to program and are being developed for space applications. We have implemented two versions of TRN on a multi-core processor and tested them in a laboratory setting. For primitive-body navigation we have demonstrated 4 second TRN updates with accuracies on order 1% of altitude. For a Mars landing application we have shown two second updates while taking out kilometer scale position uncertainties.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    13
    Citations
    NaN
    KQI
    []