Ultrashort echo time imaging for quantification of hepatic iron overload: Comparison of acquisition and fitting methods via simulations, phantoms, and in vivo data: UTE to Assess Liver R2*

2019 
BACKGROUND: Current R2*-MRI techniques for measuring hepatic iron content (HIC) use various acquisition types and fitting models. PURPOSE: To evaluate the accuracy and precision of R2*-HIC acquisition and fitting methods. STUDY TYPE: Signal simulations, phantom study, and prospective in vivo cohort. POPULATION: In all, 132 patients (58/74 male/female, mean age 17.7 years). FIELD STRENGTH/SEQUENCE: 2D-multiecho gradient-echo (GRE) and ultrashort echo time (UTE) acquisitions at 1.5T. ASSESSMENT: Synthetic MR signals were created to mimic published GRE and UTE methods, using different R2* values (25-2000 s-1 ) and signal-to-noise ratios (SNR). Phantoms with varying iron concentrations were scanned at 1.5T. In vivo data were analyzed from 132 patients acquired at 1.5T. R2* was estimated by fitting using three signal models. Accuracy and precision of R2* measurements for UTE acquisition parameters (SNR, echo spacing [ΔTE], maximum echo time [TEmax ]) and fitting methods were compared for simulated, phantom, and in vivo datasets. STATISTICAL TESTS: R2* accuracy was determined from the relative error and by linear regression analysis. Precision was evaluated using coefficient of variation (CoV) analysis. RESULTS: In simulations, all models had high R2* accuracy (error 0.99, P 0.99, P < 0.001) for the noise subtraction model for 25≤R2*≤2000 s-1 . However, both quadratic and constant offset models, using shorter TEmax (≤4.7 msec) overestimated R2* and yielded high CoVs up to ∼170% for low R2* (<250 s-1 ). DATA CONCLUSION: UTE with TEmax ≥ 10.1 msec and ΔTE ≤ 0.5 msec yields accurate R2* estimates over the entire clinical HIC range. Monoexponential fitting with noise subtraction is the most robust signal model to changes in UTE parameters and achieves the highest R2* accuracy and precision. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:1475-1488.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    3
    Citations
    NaN
    KQI
    []