An Optimized RAD51 Inhibitor That Disrupts Homologous Recombination without Requiring Michael Acceptor Reactivity

2013 
Homologous recombination (HR) is an essential process in cells that provides repair of DNA double-strand breaks and lesions that block DNA replication. RAD51 is an evolutionarily conserved protein that is central to HR. Overexpression of RAD51 protein is common in cancer cells and represents a potential therapeutic target in oncology. We previously described a chemical inhibitor of RAD51, called RI-1 (referred to as compound 1 in this report). The chloromaleimide group of this compound is thought to act as a Michael acceptor and react with the thiol group on C319 of RAD51, using a conjugate addition–elimination mechanism. In order to reduce the likelihood of off-target effects and to improve compound stability in biological systems, we developed an analogue of compound 1 that lacks maleimide-based reactivity but retains RAD51 inhibitory activity. This compound, 1-(3,4-dichlorophenyl)-3-(4-methoxyphenyl)-4-morpholino-1H-pyrrole-2,5-dione, named RI-2 (referred to as compound 7a in this report), appears to b...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    73
    Citations
    NaN
    KQI
    []