Formation and structural evolution of biphenyl polyamide thin film on hollow fiber membrane during interfacial polymerization.

2011 
Abstract A novel reverse osmosis hollow fiber membrane was prepared by interfacial polymerization from 3,3′,5,5′-biphenyl tetraacyl chloride and m-phenylenediamine on a polysulfone hollow fiber membrane. The structural evolution of biphenyl polyamide thin film during interfacial polymerization was monitored by attenuated total reflectance infrared, X-ray photoelectron spectroscopy and atom force microscopy. The relationship between the structure and separation properties of the membranes was investigated. Results show that the biphenyl polyamide thin film had a three-layer structure: a loose initial layer with a low cross-linked structure, a dense middle layer with a high cross-linked structure and a loose surface layer with a low cross-linked structure. The dense middle layer had an intrinsic cross-linked structure with over 86.0% amide bonds (–CONH–) and below 14.0% carboxylic groups (–COOH), mainly responsible for separation. A growth model of the biphenyl polyamide thin film was proposed to describe the structural evolution process during interfacial polymerization.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    53
    Citations
    NaN
    KQI
    []