The density of primes dividing a particular non-linear recurrence sequence

2015 
Define the sequence $\{b_n\}$ by $b_0=1,b_1=1, b_2=2,b_3=1$, and $$b_n=\begin{cases} \frac{b_{n-1}b_{n-3}-b_{n-2}^2}{b_{n-4}}&\textrm{if}~ n\not\equiv 0\pmod 3, \frac{b_{n-1}b_{n-3}-3b_{n-2}^2}{b_{n-4}}&\textrm{if}~ n\equiv 0\pmod 3. We relate this sequence $\{b_n\}$ to the coordinates of points on the elliptic curve $E:y^2+y=x^3-3x+4$. We use Galois representations attached to $E$ to prove that the density of primes dividing a term in this sequence is equal to $\frac{179}{336}$. Furthermore, we describe an infinite family of elliptic curves whose Galois images match that of $E$.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    0
    Citations
    NaN
    KQI
    []