Carbon-carbon bond formation in the reaction of hydrated carbon dioxide radical anions with 3-butyn-1-ol

2019 
Abstract Electrochemical activation of carbon dioxide in aqueous solution is a promising way to use carbon dioxide as a C1 building block. Mechanistic studies in the gas phase play an important role to understand the inherent chemical reactivity of the carbon dioxide radical anion. Here, the reactivity of CO 2 − (H 2 O) n with 3-butyn-1-ol is investigated by Fourier transform ion cyclotron (FT-ICR) mass spectrometry and quantum chemical calculations. Carbon-carbon bond formation takes places, but is associated with a barrier. Therefore, bond formation may require uptake of several butynol molecules. The water molecules slowly evaporate from the cluster due to the absorption of room temperature black-body radiation. When all water molecules are lost, butynol evaporation sets in. In this late stage of the reaction, side reactions occur including H atom transfer and elimination of HOCO .
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    88
    References
    5
    Citations
    NaN
    KQI
    []