P-glycoprotein but not topoisomerase II and glutathione-S-transferase-pi accounts for enhanced intracellular drug-resistance in LoVo MDR human cell lines.

1992 
The biochemical bases of the multidrug-resistant (MDR) phenotype were investigated in drug-resistant sublines derived from LoVo human colon carcinoma cell lines by doxorubicin (DOX) and teniposide (VM26) selection. In addition to P-glycoprotein-mediated drug extrusion through the plasma-membrane, LoVo MDR cells display a further drug-resistance mechanism. That is, to achieve equitoxic effects, LoVo MDR sublines require much higher intracellular drug concentrations than those required by LoVo drug-sensitive parent cell line. Involvement of mdr1, topoisomerase Il and glutathione-S-transferase-pi (GST-π) drug-resistance systems in intracellular drug resistance was investigated. Pharmacologic and biochemical data indicated that intracellular drug resistance in LoVo MDR sublines is uniquely consequent to the drug-transporting property of intracytoplasmic membrane-bound P-glycoprotein molecules which compartment drugs in vacuolelike structures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    6
    Citations
    NaN
    KQI
    []