Endoperoxide-based compounds: cross-resistance with artemisinins and selection of a Plasmodium falciparum lineage with a K13 non-synonymous polymorphism

2018 
Background: Owing to the emergence of multiresistant Plasmodium falciparum parasites in Southeast Asia, along with the impressive decrease in the efficacy of the endoperoxide compound artemisinin and of artemisinin-based combination therapies, the development of novel antimalarial drugs or combinations is required. Although several antiplasmodial molecules, such as endoperoxide-based compounds, are in advanced research or development, we do not know whether resistance to artemisinin derivatives might impact the efficacy of these new compounds. Objectives: To address this issue, the antiplasmodial efficacy of trioxaquines, hybrid endoperoxide-based molecules, was explored, along with their ability to select in vitro resistant parasites under discontinuous and dose-escalating drug pressure. Methods: The in vitro susceptibilities of artemisinin- and trioxaquine-resistant laboratory strains and recent Cambodian field isolates were evaluated by different phenotypic and genotypic assays. Results: Trioxaquines tested presented strong cross-resistance with artemisinin both in the artemisinin-resistant laboratory F32-ART5 line and in Cambodian field isolates. Trioxaquine drug pressure over 4 years led to the in vitro selection of the F32-DU line, which is resistant to trioxaquine and artemisinin, similar to the F32-ART lineage. F32-DU whole genome sequencing (WGS) revealed that resistance to trioxaquine was associated with the same non-synonymous mutation in the propeller domain of the K13 protein (M476I) that was found in the F32-ART lineage. Conclusions: These worrisome results indicate the risk of cross-resistance between artemisinins and endoperoxide-based antiplasmodial drugs in the development of the K13 mutant parasites and question the usefulness of these molecules in the future therapeutic arsenal.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    6
    Citations
    NaN
    KQI
    []