Lipopolysaccharides Inhibit REG3A Self-Aggregation on Gold Nanoparticles: A Combined Study of Multivariate Analysis on Time-Resolved Localized Surface Plasmon Resonance Spectra and Molecular Modeling

2019 
Aggregation behavior of proteins on the surface of gold nanoparticles (AuNPs) has been extensively studied for its promising applications in biosensing, bioimaging, photodynamic therapy, drug delivery, etc. In this work, we studied adsorption kinetics of an antimicrobial protein, regenerating islet-derived protein 3-alpha (REG3A), on the surface of as-synthesized citrate-capped AuNPs under the influence of lipopolysaccharides (LPSs), with a combined method of UV–vis spectroscopy, multivariate analysis, and molecular dockings. In the AuNPs–REG3A binary system, a component with an “up-and-down” signal was detected by the in-depth data analysis on time-resolved spectroscopic data, corresponding to the protein agglomeration and exfoliation observed in transmission electron microscopy and atomic force microscopy experiments. Intriguingly, LPSs can rescue the spectral oddity—the adsorption pattern in the AuNPs–REG3A–LPS ternary system becomes normal and similar to a typical single-layer mode as in our previous ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    0
    Citations
    NaN
    KQI
    []