Quantification of the endogenous growth hormone and prolactin lowering effects of a somatostatin-dopamine chimera using population PK/PD modeling.

2020 
A phase 1 clinical trial in healthy male volunteers was conducted with a somatostatin-dopamine chimera (BIM23B065), from which information could be obtained on the concentration-effect relationship of the inhibition of pulsatile endogenous growth hormone and prolactin secretion. Endogenous growth hormone profiles were analyzed using a two-step deconvolution-analysis-informed population pharmacodynamic modeling approach, which was developed for the analyses of pulsatile profiles. Prolactin concentrations were modelled using a population pool model with a circadian component on the prolactin release. During treatment with BIM23B065, growth hormone secretion was significantly reduced (maximal effect [EMAX] = - 64.8%) with significant reductions in the pulse frequency in two out of three multiple ascending dose cohorts. A circadian component in prolactin secretion was identified, modelled using a combination of two cosine functions with 24 h and 12 h periods. Dosing of BIM23B065 strongly inhibited (EMAX = - 91%) the prolactin release and demonstrated further reduction of prolactin secretion after multiple days of dosing. This study quantified the concentration-effect relationship of BIM23B065 on the release of two pituitary hormones, providing proof of pharmacology of the chimeric actions of BIM23B065.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    2
    Citations
    NaN
    KQI
    []