Coulomb interaction of electron gas in MQWs Si/Si1−xGex/Si

2008 
Abstract We present a theoretical analysis of the conduction and valence-band diagrams of SiGe/Si Multiple Quantum Wells (MQWs), having a specific “W” geometry, and designed for emission or photodetection around the 1.55 μm wavelength. Peculiar features have been extrapolated by solving self-consistent Schrodinger and Poisson equations, taking into account the electrostatic attraction induced by carrier injection. As a result, Coulomb interaction strongly modifies the band profiles and increases the electron probability density at the quantum well interfaces; the injected carrier concentration enhances electron–hole wave functions overlap and the in-plane oscillator strength. These MQWs structures, strain-compensated on relaxed Si 0.75 Ge 0.25 pseudo-substrates, are potentially interesting for telecom applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    1
    Citations
    NaN
    KQI
    []