METHODS FOR CALCULATION OF SELF-SHIELDED CROSS SECTIONS OF FULLY CERAMIC MICRO-ENCAPSULATED FUEL DOUBLE HETEROGENEOUS SYSTEM

2021 
Fully ceramic micro-encapsulated (FCM) fuel is a kind of fuel that employs tri-structural isotropic (TRISO) particles to enhance safety. The FCM fuel assembly is a double heterogeneous system. The conventional self-shielding calculation methods cannot treat the DH effect. In this paper, three methods based on equivalent homogenization of the TRISO particle and the matrix are studied and compared: the hyper-fine energy group cross sections (XSs) homogenization based hyper-fine energy group method (HHM), the hyper-fine energy group XSs homogenization based subgroup method (HSM) and the subgroup XSs homogenization based subgroup method (SSM). These methods are implemented in a high-fidelity neutronics code NECP-X. Numerical results show that these methods are able to treat the double heterogeneity of the FCM fuel. The precision of the HHM and HSM is higher than that of the SSM.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    0
    Citations
    NaN
    KQI
    []