A microfluidic chip capable of switching W/O droplets to vertical laminar flow for electrochemical detection of droplet contents
2014
Abstract Analysis of droplet contents is a key function involved in droplet - based microfluidic systems. Direct electrochemical detection of droplet contents suffers problems such as relatively poor repeatability, interference of capacitive current and relatively poor detectability. This paper presents a novel hybrid polydimethylsiloxane-glass chip for highly sensitive and reproducible amperometric detection of droplet contents. By wettability-patterning of the channel surface of the hybrid chip, water in oil droplets generated in the upstream part of the central channel can be switched to a two-phase vertical laminar flow (i.e., a continuous oil stream flowing atop a continuous aqueous stream) in the downstream part of the channel. The vertical laminar flow keeps the analyte in the underneath-flowing aqueous stream in direct contact with the sensing electrodes located on the bottom surface of the channel. Therefore, steady-state current signals with high sensitivity (1.2 A M −1 cm −2 for H 2 O 2 ), low limit of detection (0.12 μM, S/N = 2), and good reproducibility (RSD 1.1% at 0.3 mM H 2 O 2 ) were obtained. The methods for patterning of the inner channel surface are presented, and the behaviors of the microchip in flow profile switching and amperometric detection are discussed. The application of the developed microchip to enzyme kinetics study is also demonstrated.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
35
References
18
Citations
NaN
KQI