MLL5α activates AR/NDRG1 signaling to suppress prostate cancer progression.

2020 
Prostate cancer (PCa) is one of the most prevalent malignancies in men. However, the molecular mechanism controlling the transformation of androgen-dependent PCa (ADPC) to castration-resistant PCa (CRPC) is largely unknown. Androgen receptor (AR) signaling has been reported to play a key role in this process; thus, searching for the novel AR co-activator is important for identifying the mechanism underlying PCa progression. In this study, we focused on the function of mixed lineage leukemia-5α (MLL5α), an epigenetic regulator that exhibits aberrant expression in PCa. MLL5α was the primary expressed form of MLL5 protein in PCa cells and it significantly suppressed proliferation, invasion, and migration in PCa cell lines. Upon stimulation with dihydrotestosterone (DHT), knockdown of MLL5α significantly suppressed N-myc downstream regulated gene 1 (NDRG1) and Kallikrein-related peptidase 3 (KLK3) expression. MLL5α directly bound with AR on the androgen response elements (AREs) and recruited H3K4me3 to the promoters of NDRG1 and KLK3. Downregulation of NDRG1 partially restored the cell invasion and migration suppressed by MLL5α. As evaluated by the proliferation of PCa cells, overexpression of MLL5α synergistically promoted sensitivity to enzalutamide (ENZ) treatment. In PCa patients, MLL5α expression was lower in the high Gleason score (GS) (GS > 7) group than in the low GS (GS < 7) group. In conclusion, suppression of AR/NDRG1 signaling via androgen deprivation therapy (ADT) may be a potential mechanism of CRPC progression. MLL5α significantly suppressed PCa progression by promoting AR/NDRG1 signaling, indicating that regulating MLL5α expression may be a potential treatment approach for patients with advanced PCa.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    73
    References
    2
    Citations
    NaN
    KQI
    []