From Si(II) to Si(IV) and Back: Reversible Intramolecular Carbon–Carbon Bond Activation by an Acyclic Iminosilylene

2017 
Reversibility is fundamental for transition metal catalysis, but equally for main group chemistry and especially low-valent silicon compounds, the interplay between oxidative addition and reductive elimination is key for a potential catalytic cycle. Herein, we report a highly reactive acyclic iminosilylsilylene 1, which readily performs an intramolecular insertion into a C═C bond of its aromatic ligand framework to give silacycloheptatriene (silepin) 2. UV–vis studies of this Si(IV) compound indicated a facile transformation back to Si(II) at elevated temperatures, further supported by density functional theory calculations and experimentally demonstrated by isolation of a silyleneborane adduct 3 following addition of B(C6F5)3. This tendency to undergo reductive elimination was exploited in the investigation of silepin 2 as a synthetic equivalent of silylene in the activation of small molecules. In fact, the first monomeric, four-coordinate silicon carbonate complex 4 was isolated and fully characterized...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    87
    Citations
    NaN
    KQI
    []