Identifying Quark Matter in Hybrid Stars through Relativistic Tidal Deformations

2019 
We study a specific model of neutron star matter that supports a phase transition to quark matter at high density and examine parameter ranges for consistency with the mass-weighted tidal deformability of Λ ˜ = 300 − 230 + 420 for a mass ratio of q ∈ [ 0.73 , 1.0 ] , as inferred from observations of gravitational waves from the binary neutron star merger event GW170817. By using this observation to restrict the parameter space for the equation of state (EoS) model used throughout this study, we aim to assess the possibility of a potential solution to the masquerade and flavor camouflage problems for hybrid EoS models. Assuming the two stars have the same EoS, in which the Dirac-Brueckner-Hartree Fock (DBHF) nuclear model transitions to the vBag quark model, we see if the parameter space of these hybrid model stars are restricted due to the adherence to the reported Λ 1.4 ∈ 70 , 580 and M m a x ∈ [ 2.01 , 2.16 ] M ⊙ constraints. Upon completion, we find that, while the parameter space for our model does get restricted, it does not ultimately resolve the masquerade and flavor camouflage problems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    0
    Citations
    NaN
    KQI
    []