Mathematical modeling of biosensor action in the region between diffusion and kinetic modes

2014 
We describe the action of electrochemical enzyme-based biosensor by applying mathematical modeling. We consider two types of biosensors: a biosensor containing a single heterogeneous enzyme layer and biosensor containing an additional protecting polymer-based layer. The initial parameters of the biosensor were selected on the basis of typical immobilized glucose oxidase-based electrochemical biosensor. A phenomenon of the accumulation of the electrochemically active product inside the biocatalytic layer was evaluated. It was shown that accumulation of the product can increase sensitivity of the biosensor no more than 2.6 times. Due to the asymmetric distribution of the electrochemically active product inside the enzyme-containing membrane and asymmetric diffusion of the substrate, it was shown that the thickness of the membrane possesses an optimal value. For the selected set of initial parameters, the optimal thickness of the enzyme-containing layer was 2.9–4.5 \(\upmu \)m. Real profiles of the impact of the thickness of the membranes were evaluated. A method for the evaluation of acceptable fluctuations of the membrane diffusion parameters on biosensor response was created, and the profiles of the dependence were calculated. These dependencies can be used for development of the software for biosensor monitoring.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    4
    Citations
    NaN
    KQI
    []