ANALYSIS OF THE TRANSMUTATIONAL CAPABILITIES OF A NOVEL MOLTEN SALT REACTOR

2002 
Nowadays the molten salt reactor (MSR) concept seems to revive as one of the most promising systems for the realization of transmutation. In the molten salt reactors and subcritical systems the fuel and material to be transmuted circulate dissolved in some molten salt. The main advantage of this reactor type is the possibility of the continuous feed and reprocessing of the fuel. In the present paper a novel molten salt reactor concept is introduced and its transmutational capabilities are studied. The goal is the development of a transmutational technique along with a device implementing it, which yield higher transmutational efficiencies than that of the known procedures and thus result in radioactive waste whose load on the environment is reduced both in magnitude and time length. The procedure is the multi-step time-scheduled transmutation, in which transformation is done in several consecutive steps of different neutron flux and spectrum. In the new MSR concept, named “multi-region” MSR (MRMSR), the primary circuit is made up of a few separate loops, in which salt-fuel mixtures of different compositions are circulated. The loop sections constituting the core region are only neutronically and thermally coupled. This new concept makes possible the utilization of the spatial dependence of the spectrum as well as the advantageous features of liquid fuel such as the possibility of continuous chemical processing etc. In order to compare a “conventional” MSR and a proposed MRMSR in terms of efficiency, preliminary calculational results are shown. Further calculations in order to find the optimal implementation of this new concept and to emphasize its other advantageous features are going on.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    1
    Citations
    NaN
    KQI
    []