High-throughput SNP detection using nano-scale engineered biomagnetite

2007 
Abstract A semi-automated system for the large-scale detection of single nucleotide polymorphisms (SNPs) has been developed based on allele-specific oligonucleotide hybridization and thermal dissociation curve analysis using nano-scale engineered biomagnetite (bacterial magnetic particles; BacMPs). For reliable detection in large numbers of samples, several conditions for the capture of target DNA on nano-sized BacMPs and the denaturation of double-stranded DNA were optimized. The most efficient target DNA capture was observed using short PCR amplicons (69 bp). Captured DNAs were denatured using 50 mM NaOH. With these optimizations, large-scale SNP detection was performed on 822 samples of the transforming growth factor (TGF)-β1 gene, which is rich in both GC content and repetitive sequences. High reliability for the semi-automated BacMP-based SNP detection system was confirmed following comparison to traditional sequencing-based methods.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    27
    Citations
    NaN
    KQI
    []