Cryoanalgesia of the anterior femoral cutaneous nerve (AFCN) for the treatment of neuropathy-mediated anterior thigh pain: anatomy and technical description.

2020 
OBJECTIVE To describe and illustrate the magnetic resonance imaging (MRI) anatomy of the anterior femoral cutaneous nerve (AFCN) and a new technique for cryoanalgesia of the AFCN for long-term analgesic treatment of recalcitrant AFCN-mediated neuropathic pain. MATERIALS AND METHODS Using a procedural high-resolution MRI technique, we describe the MRI anatomy of the AFCN. Three patients (mean age, 48 years; range, 41-67 years) with selective nerve block-verified recalcitrant AFCN-mediated anterior thigh pain were enrolled to undergo cryoanalgesia of the AFCN. Procedures were performed under MRI guidance using clinical wide-bore MR imaging systems and commercially available cryoablation system with MR-conditional probes. Outcome variables included technical success, clinical effectiveness including symptom relief measured on an 11-point visual analog scale, frequency of complications, and procedure time. RESULTS Procedural MRI allowed to successfully demonstrate the course of the AFCN, accurate cryoprobe placement, and monitoring of the ice ball, which resulted in technically successful iceball growth around the AFCN in all cases. All procedures were clinically effective, with median pain intensity decreasing from 8 (7-9) before the procedure to 1 (0-2) after the procedure. The cryoanalgesia effect persisted during a 12-month follow-up period in all three patients. No major complications occurred. The average total procedure time was 98 min (range, 85-125 min). CONCLUSION We describe the MRI anatomy of the AFCN and a new technique for cryoanalgesia of the AFCN using MRI guidance, which permits identification of the AFCN, selective targeting, and iceball monitoring to achieve long-term AFCN-mediated neuropathic pain relief.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    0
    Citations
    NaN
    KQI
    []