The origin of additive genetic variance driven by positive selection.

2020 
Fisher's fundamental theorem of natural selection predicts no additive variance of fitness in a natural population. Consistently, studies in a variety of wild populations show virtually no narrow-sense heritability (h2) for traits important to fitness. However, counterexamples are occasionally reported, calling for a deeper understanding on the evolution of additive variance. In this study we propose adaptive divergence followed by population admixture as a source of the additive genetic variance of evolutionarily important traits. We experimentally tested the hypothesis by examining a panel of approximately 1,000 yeast segregants produced by a hybrid of two yeast strains that experienced adaptive divergence. We measured over 400 yeast cell morphological traits and found a strong positive correlation between h2 and evolutionary importance. Because adaptive divergence followed by population admixture could happen constantly, particularly in species with wide geographic distribution and strong migratory capacity (e.g., humans), the finding reconciles the observation of abundant additive variances in evolutionarily important traits with Fisher's fundamental theorem of natural selection. Importantly, the revealed role of positive selection in promoting rather than depleting additive variance suggests a simple explanation for why additive genetic variance can be dominant in a population despite the ubiquitous between-gene epistasis observed in functional assays.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    1
    Citations
    NaN
    KQI
    []