Nuclear magnetic resonance studies of amphiphile hydration: Effects of cholesterol on phosphatidyl choline hydration☆

1977 
Abstract Water which remains unfrozen at −25 °C in the presence of phosphatidyl choline (PC) gives rise to a proton magnetic resonance signal which can be used to measure the hydration of single-walled vesicles and multilamellar liposomes of PC. The proton magnetic resonance signal of the unfrozen water in these systems is strongly dependent upon the nature of the molecular domain in which the water is situated. For example, at cholesterol to PC molar ratios below 35 mol%, the vesicle hydration signal consists of a relatively narrow symmetric peak (line width, ~150 Hz). At higher molar ratios, however, rather broad asymmetric signals appear (line widths, ~300–1000 Hz) which indicate that when significant quantities of cholesterol are packed in the bilayer there must be regions in which there is a preferred direction for motion of the unfrozen water. It is possible to solubilize significant quantities of cholesterol by sonicating it in concentrated solutions of sodium dodecyl sulfate. Addition of cholesterol to PC vesicles via these sodium dodecyl sulfate-cholesterol complexes caused hydration changes in the PC, which, at high cholesterol to PC molar ratios, paralleled the effects of cholesterol on PC hydration in homogeneous vesicles in which the cholesterol and PC were simply cosonicated.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    16
    Citations
    NaN
    KQI
    []