Retention of crab larvae in a coastal null zone
2007
Alongshelf transport in the southern Middle Atlantic Bight is forced by buoyancy-driven currents originating in three large estuaries along the bight. These currents are strongest in the coastal ocean near the southern terminus of each estuary, while the analogous region on the northern side is characterized by weak subtidal flow. We used a combination of field observations and numerical modeling to test the hypothesis that these regions of weak subtidal flow are coastal null zones that serve as retention areas for larvae. The field study consisted of a four-day, shipboard investigation of the distribution of blue crab larvae (Callinectes sapidus) near the mouth of Delaware Bay (∼39°N, 75°W) in late summer, 2004. Hydrographic surveys of the study site were conducted with a hull-mounted, surface-measuring system. Results showed a sharp boundary between the null zone and the buoyancy-driven current to the south. Blue crab larvae were collected in surface plankton tows along a 30-km transect that encompassed these two areas. Stations with higher densities of larvae were clustered in the null zone during both ebb and flood tides. A numerical model was used to examine the physical mechanisms responsible for the observed distribution. Model results agreed with the field survey and showed that simulated larvae are aggregated in the null zone. The simulations also demonstrated that larvae spawned within the null zone have a much greater probability of settling in juvenile nursery habitat within the bay. The close agreement between field and model results provides consistent support for the hypothesis that coastal null zones associated with the buoyancy-driven circulation of large estuaries may allow retention of larvae in the vicinity of the natal spawning population.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
41
References
19
Citations
NaN
KQI