The pH gradient-dependent transport of organic cations in the renal brush border membrane. Studies with acridine orange.

1987 
Abstract Recent studies have suggested that there is an organic cation-proton exchange mechanism in the renal brush border membrane which may be responsible for the active secretion of organic cations by the kidney. In all of these studies, the movement of organic cations was specifically monitored in the presence of a proton gradient. In this study, the organic cation-proton exchange mechanism in renal brush border membrane vesicles was examined by studying the movement of protons in the presence of favorable gradients of the organic cation, tetraethylammonium (TEA). Using acridine orange, a pH-sensitive fluorescent probe, we demonstrated that in isolated brush border membrane vesicles prepared from rabbit renal cortex, the rate of proton efflux increased with increasing inwardly directed gradients of TEA, although the efflux was saturable. An outwardly directed TEA gradient could also accelerate the influx of protons. The rate of exchange of protons for TEA was slower than that for Na+. This slower rate appears to be due to a lower Vmax of the exchange of organic cations with protons. These data provide more direct evidence for an exchange of organic cations with protons or a cotransport of organic cations and hydroxyl ions in the renal brush border membrane.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    44
    Citations
    NaN
    KQI
    []