Bending behavior and design model of bolted flange-plate connection

2013 
Abstract This paper focuses on the bending behavior of flange-plate connections under pure-bending and aims for putting forward a practical design model. Four basic types of bolted flange-plate connections are tested and related finite element analysis is implemented. The finite element model is verified by experimental results and proved to be precise and reliable. Based on the finite element analysis, the distribution of von-Mises strain and contact pressure at end plates of the connections is revealed. The valuable information can be directly used in the theoretical model to present a relatively clear yield line mechanism and definite pressure center. The bending capacity determined by flange-plates is derived with the virtual work principle. It is proved that the theoretical model can give a good prediction for the yield bending capacity of the connections. Meanwhile, traditional T-stub analogy is introduced to obtain the bending capacity determined by bolts. Combining with the two different design models and assuming that the end plates should fail before high strength bolts, a practical design procedure is put forward. The connections designed according to this procedure will meet the demand of safety and economy. Furthermore, the design model herein can provide useful reference for practical design of other kinds of bolted flange-plate connections.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    42
    Citations
    NaN
    KQI
    []