A template-free facile approach for the synthesis of CuS–rGO nanocomposites towards enhanced photocatalytic reduction of organic contaminants and textile effluents

2015 
Copper sulfide–reduced graphene oxide nanocomposites were synthesized hydrothermally from copper nitrate and thiourea as precursor materials. In the hydrothermal route, rGO is formed by the reduction of GO with simultaneous formation of CuS–rGO nanocomposites. The CuS–rGO nanocomposites was investigated using powder XRD, FE-SEM, HR-TEM, DRS UV-vis spectroscopy, photoluminescence (PL) measurements, infra-red spectroscopy and photoelectron spectroscopy (XPS). DRS UV-vis measurements of CuS–rGO nanocomposites feature a strong absorption in the range 400–800 nm, which suggests that they have photocatalysis applications. Three different composites were prepared with different loadings of rGO to study the effect of loading on methylene blue (MB) dye degradation. The photocatalytic properties of the composites were tested in a visible light photoreactor chamber. The CuS–rGO nanocomposites were found to exhibit high photocatalytic activities with a maximum efficiency of 99.27% after 60 min in a visible source. These interesting and enhanced catalytic properties of CuS–rGO-x nanocomposite was further tested for organic contaminant and textile effluents collected from two different sites situated in the Thirupur textile industries, India. Results showed the CuS–rGO-x nanocomposite is an efficient photocatalyst.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    63
    Citations
    NaN
    KQI
    []