Determination of rare earth elements in uranium materials by ICP-MS and ICP-OES after matrix separation by solvent extraction with TEHP

2020 
Abstract A simple analytical procedure has been developed for the determination of trace rare earth elements (REEs) in uranium materials by inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES), after selective extraction of uranium matrix using tri(2-ethylhexyl)phosphate (TEHP). The separation method reduces uranium concentration in the raffinate to less than 10 mg L-1 (from initial value of ∼ 40,000 mg L-1), thus, eliminating severe matrix interferences from uranium, such as isobaric and polyatomic interferences in ICP-MS, and spectral interferences in ICP-OES. The raffinate is directly used for the analysis of REEs, without any pretreatment. The proposed method was validated by applying it to the ICP-MS determination of REEs in uranium dioxide (UO2) samples, by spiking with standard reference REE solutions and performing the recovery tests. The recoveries ranged from 94.0 to 105.5%. The validation was also performed similarly for ICP-OES measurements on U3O8 as well as UO2 samples, which provided recoveries in the ranges of 96 to 105.8% and 99.2 to 101.6%, respectively. The method offers a fast, simple and effective method with low detection limit, and is suggested for the determination of REEs in uranium-based nuclear grade materials such as uranyl nitrate hexahydrate, uranium hexafluoride and uranium trioxide.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    4
    Citations
    NaN
    KQI
    []