Insights into Nucleosome Organization in Mouse Embryonic Stem Cells through Chemical Mapping

2016 
Nucleosome organization influences gene activity by controlling DNA accessibility to transcription machinery. Here, we develop a chemical biology approach to determine mammalian nucleosome positions genome-wide. We uncovered surprising features of nucleosome organization in mouse embryonic stem cells. In contrast to the prevailing model, we observe that for nearly all mouse genes, a class of fragile nucleosomes occupies previously designated nucleosome-depleted regions around transcription start sites and transcription termination sites. We show that nucleosomes occupy DNA targets for a subset of DNA-binding proteins, including CCCTC-binding factor (CTCF) and pluripotency factors. Furthermore, we provide evidence that promoter-proximal nucleosomes, with the +1 nucleosome in particular, contribute to the pausing of RNA polymerase II. Lastly, we find a characteristic preference for nucleosomes at exon-intron junctions. Taken together, we establish an accurate method for defining the nucleosome landscape and provide a valuable resource for studying nucleosome-mediated gene regulation in mammalian cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    120
    Citations
    NaN
    KQI
    []