Bezafibrate Upregulates Mitochondrial Biogenesis and Influence Neural Differentiation of Human-Induced Pluripotent Stem Cells.

2018 
Bezafibrate (BZ) regulates mitochondrial biogenesis by activation of PPAR’s receptors and enhancing the level of PGC-1α coactivator. In this report, we investigated the effect of BZ on the expression of genes (1) that are linked to different pathways involved in mitochondrial biogenesis, e.g., regulated by PPAR’s receptors or PGC-1α coactivator, and (2) involved in neuronal or astroglial fate, during neural differentiation of hiPSC. The tested cell populations included hiPSC-derived neural stem cells (NSC), early neural progenitors (eNP), and neural progenitors (NP). RNA-seq analysis showed the expression of PPARA, PPARD receptors and excluded PPARG in all tested populations. The expression of PPARGC1A encoding PGC-1α was dependent on the stage of differentiation: NSC, eNP, and NP differed significantly as compared to hiPSC. In addition, BZ-evoked upregulation of PPARGC1A, GFAP, S100B, and DCX genes coexist with downregulation of MAP2 gene only at the eNP stage of differentiation. In the second task, we investigated the cell sensitivity and mitochondrial biogenesis upon BZ treatment. BZ influenced the cell viability, ROS level, mitochondrial membrane potential, and total cell number in concentration- and stage of differentiation-dependent manner. Induction of mitochondrial biogenesis evoked by BZ determined by the changes in the level of SDHA and COX-1 protein, and mtDNA copy number, as well as the expression of NRF1, PPARGC1A, and TFAM genes, was detected only at NP stage for all tested markers. Thus, developmental stage-specific sensitivity to BZ of neurally differentiating hiPSC can be linked to mitochondrial biogenesis, while fate commitment decisions to PGC-1α (encoded by PPARGC1A) pathway.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    13
    Citations
    NaN
    KQI
    []