RELATIVISTIC THEORY OF CALCULATION OF E1 TRANSITION AMPLITUDES, AND GAUGE INVARIANCE PRINCIPLE

2020 
The combined relativistic energy approach and relativistic many-body perturbation theory with the zeroth order Dirac-Kohn-Sham one-particle approximation are used for estimating the energies and the E1 radiative transitions amplitudes (oscillator strengths) for the low-excited states of the francium. The comparison with available theoretical and experimental (compilated) data is performed. The important point is linked with an accurate accounting for the complex exchange-correlation (polarization) effect contributions and using the optimized one-quasiparticle representation in the relativistic many-body perturbation theory zeroth order that significantly provides a physically reasonable agreement between theory and precise experiment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    0
    Citations
    NaN
    KQI
    []