Mono-/Bimetallic Neutral Iridium(III) Complexes Bearing Diketopyrrolopyrrole-Substituted N-Heterocyclic Carbene Ligands: Synthesis and Photophysics.

2021 
The synthesis and photophysics (UV-vis absorption, emission, and transient absorption) of four neutral heteroleptic cyclometalated iridium(III) complexes (Ir-1-Ir-4) incorporating thiophene/selenophene-diketopyrrolopyrrole (DPP)-substituted N-heterocyclic carbene (NHC) ancillary ligands are reported. The effects of thiophene versus selenophene substitution on DPP and bis- versus monoiridium(III) complexation on the photophysics of these complexes were systematically investigated via spectroscopic techniques and density functional theory calculations. All complexes exhibited strong vibronically resolved absorption in the regions of 500-700 nm and fluorescence at 600-770 nm, and both are predominantly originated from the DPP-NHC ligand. Complexation induced a pronounced red shift of this low-energy absorption band and the fluorescence band with respect to their corresponding ligands due to the improved planarity and extended π-conjugation in the DPP-NHC ligand. Replacing the thiophene units by selenophenes and/or biscomplexation led to the red-shifted absorption and fluorescence spectra, accompanied by the reduced fluorescence lifetime and quantum yield and enhanced population of the triplet excited states, as reflected by the stronger triplet excited-state absorption and singlet oxygen generation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    75
    References
    0
    Citations
    NaN
    KQI
    []