Bio-inspired Learning of Sensorimotor Control for Locomotion

2020 
This paper presents a bio-inspired central pattern generator (CPG)-type architecture for learning optimal maneuvering control of periodic locomotory gaits. The architecture is presented here with the aid of a snake robot model problem involving planar locomotion of coupled rigid body systems. The maneuver involves clockwise or counterclockwise turning from a nominally straight path. The CPG circuit is realized as a coupled oscillator feedback particle filter. The collective dynamics of the filter are used to approximate a posterior distribution that is used to construct the optimal control input for maneuvering the robot. A Q-learning algorithm is applied to learn the approximate optimal control law. The issues surrounding the parametrization of the Q-function are discussed. The theoretical results are illustrated with numerics for a 5-link snake robot system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []