Bio-inspired Learning of Sensorimotor Control for Locomotion
2020
This paper presents a bio-inspired central pattern generator (CPG)-type architecture for learning optimal maneuvering control of periodic locomotory gaits. The architecture is presented here with the aid of a snake robot model problem involving planar locomotion of coupled rigid body systems. The maneuver involves clockwise or counterclockwise turning from a nominally straight path. The CPG circuit is realized as a coupled oscillator feedback particle filter. The collective dynamics of the filter are used to approximate a posterior distribution that is used to construct the optimal control input for maneuvering the robot. A Q-learning algorithm is applied to learn the approximate optimal control law. The issues surrounding the parametrization of the Q-function are discussed. The theoretical results are illustrated with numerics for a 5-link snake robot system.
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI