Trapping of single nano-objects in dynamic temperature fields

2014 
In this article we explore the dynamics of a Brownian particle in a feedback-free dynamic thermophoretic trap. The trap contains a focused laser beam heating a circular gold structure locally and creating a repulsive thermal potential for a Brownian particle. In order to confine a particle the heating beam is steered along the circumference of the gold structure leading to a non-trivial motion of the particle. We theoretically find a stability condition by switching to a rotating frame, where the laser beam is at rest. Particle trajectories and stable points are calculated as a function of the laser rotation frequency and are experimentally confirmed. Additionally, the effect of Brownian motion is considered. The present study complements the dynamic thermophoretic trapping with a theoretical basis and will enhance the applicability in micro- and nanofluidic devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    46
    Citations
    NaN
    KQI
    []