X-ray photoelectron spectroscopy characterization of oxidated Si particles formed by pulsed ion-beam ablation

2006 
Abstract X-ray photoelectron spectroscopy (XPS) is used to probe oxidation states of Si species in particles deposited using a pulsed ion-beam evaporation method. The effects of He ambient gas, ion beam intensity and post-treatments on the oxides composition and oxygen content have been studied. It is found that presence of He ambient gas led to a profound oxidation of Si species as compared to that prepared in vacuum at the same ion-beam ablation energy, i.e. both increase of SiO 2 component and oxygen concentration in the oxides coverage. The deposition in He also resulted in an increase of oxygen concentration even under lower ablation intensity, but a higher Si suboxides concentration. It is revealed that the reaction between Si and O was controlled by the ion beam intensity (temperature of Si plasma) and the gas ambient (collision probability of Si and O species). The difference in structure of oxide layers for samples obtained under various conditions is discussed based on the results of XPS analyses.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    9
    Citations
    NaN
    KQI
    []