Lessons Learned from Designing an AI-Enabled Diagnosis Tool for Pathologists.

2020 
Despite the promises of data-driven artificial intelligence (AI), little is known about how we can bridge the gulf between traditional physician-driven diagnosis and a plausible future of medicine automated by AI. Specifically, how can we involve AI usefully in physicians' diagnosis workflow given that most AI is still nascent and error-prone (e.g., in digital pathology)? To explore this question, we first propose a series of collaborative techniques to engage human pathologists with AI given AI's capabilities and limitations, based on which we prototype Impetus - a tool where an AI takes various degrees of initiatives to provide various forms of assistance to a pathologist in detecting tumors from histological slides. Finally, we summarize observations and lessons learned from a study with eight pathologists and discuss recommendations for future work on human-centered medical AI systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    66
    References
    3
    Citations
    NaN
    KQI
    []