Blending Mechanism of PS-b-PEO and PS Homopolymer at the Air/Water Interface and Their Morphological Control
2018
We report a blending mechanism of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) and PS homopolymer (homoPS) at the air/water interface. Our blending mechanism is completely different from the well-known “wet–dry brush theory” for bulk blends; regardless of the size of homoPS, the domain size increased and the morphology changed without macrophase separation, whereas the homoPS of small molecular weight (MW) leads to a transition after blending into the block copolymer domains, and the large MW homoPS is phase-separated in bulk. The difference in blending mechanism at the interface is attributed to adsorption kinetics at a water/spreading solvent interface. Upon spreading, PS-b-PEO is rapidly adsorbed to the water/spreading solvent interface and forms domain first, and then homoPS accumulates on them as the solvent completely evaporates. On the basis of our proposed mechanism, we demonstrate that rapid PS-b-PEO adsorption is crucial to determine the final morphology of the blends. We additionally found tha...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
44
References
4
Citations
NaN
KQI