Buckling behavior of composite double-layer space-grid structures

2021 
In order to better understanding the structural response of double-layer flat grids, the effects of using of a reinforced concrete (RC) topping in composite action with double-layer space-grid structures on the buckling behavior of such grids are studied. Both non-composite and composite flat grids (with and without any integral RC topping) with different span lengths are considered. The base models with span lengths of 15, 30 and 60 meters are initially selected and designed employing the well-known weight–density procedure. The finite element models are then developed in the ABAQUS environment with special consideration in the modeling procedure for beam type elements of pin connections at two ends in order to employ the capabilities of the software for buckling and post-buckling analyses. Elastic buckling analyses as-well-as non-linear analyses incorporating both the geometric and material non-linearities emphasizing the structural stability and post-buckling behavior are performed. It was found that the presence of a RC cover in composite action with double-layer flat grids can lead a decrease in the weight of steel around 29 % as-well-as maximum vertical deflection around 61 %. The presence of a RC layer can also improve the elastic buckling capacity up to 94 %. The results showed that the ultimate strength of such structures in composite state increases significantly. Finally, the RC layer can improve the post-buckling behavior which can lead an increase in the structural reliability from progressive failure or sudden loss of the structural strength.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []