Selecting Empirical Green's Functions in Regions of Fault Complexity: A Study of Data From the San Jacinto Fault Zone, Southern California

2011 
Abstract To constrain an earthquake’s source properties, the path‐ and site‐effect contributions to the seismic waveform can be approximated using another earthquake as an empirical Green’s function (EGF). An ideal EGF earthquake is smaller in magnitude than the mainshock and shares a similar focal mechanism and hypocenter. Here, we quantify how to optimally select EGF events using data from the spatially complex San Jacinto Fault Zone (SJFZ) in southern California. The SJFZ’s high seismicity rate allows us to test the EGF method for 51 target 3 M w 200 for each mainshock). We purposefully select a large population of inappropriate EGFs in order to identify thresholds and restrictions that optimize EGF selection criteria. For each mainshock/EGF pair, we compute the spectral ratio, fit the mainshock corner frequency, and measure the variability of these corner frequencies across the network. We assume a suitable EGF event will produce similar corner frequency estimates at every station. We discover that limiting hypocentral separation distances between mainshock and EGF events to Online Material: Map of earthquake locations within our study region color‐coded to indicate the mapped spatial differential between the original catalog location in the ANZA catalog and the location in the Lin et al. (2007) relocated catalog.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []