Feasibility of using DNA-immobilized nanocellulose-based immunoadsorbent for systemic lupus erythematosus plasmapheresis

2016 
The goal of this project was to study the feasibility of using a DNA-immobilized nanocellulose-based immunoadsorbent for possible application in medical apheresis such as systemic lupus erythematosus (SLE) treatment. Calf thymus DNA was bound to high surface area nanocellulose membrane at varying concentrations using UV-irradiation. The DNA-immobilized samples were characterized with scanning electron microscopy, atomic force microscopy, and phosphorus elemental analysis. The anti-ds-DNA IgG binding was tested in vitro using ELISA. The produced sample showed high affinity in vitro to bind anti-ds-DNA-antibodies from mice, as much as 80% of added IgG was bound by the membrane. Furthermore, the binding efficiency was quantitatively dependent on the amount of immobilized DNA onto nanocellulose membrane. The described nanocellulose membranes are interesting immunoadsorbents for continued clinical studies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    9
    Citations
    NaN
    KQI
    []