Analytical Methods Development in Support of the Caustic Side Solvent Extraction System

2001 
The goal of the project reported herein was to develop and apply methods for the analysis of the major components of the solvent system used in the Caustic-Side Solvent Extraction Process (CSSX). These include the calix(4)arene, the modifier, 1-(2,2,3,3- tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol and tri-n-octylamine. In addition, it was an objective to develop methods that would allow visualization of other components under process conditions. These analyses would include quantitative laboratory methods for each of the components, quantitative analysis of expected breakdown products (4-see-butylphenol and di-n-octylamine), and qualitative investigations of possible additional breakdown products under a variety of process extremes. These methods would also provide a framework for process analysis should a pilot facility be developed. Two methods were implemented for sample preparation of aqueous phases. The first involves solid-phase extraction and produces quantitative recovery of the solvent components and degradation products from the various aqueous streams. This method can be automated and is suitable for use in radiation shielded facilities. The second is a variation of an established EPA liquid-liquid extraction procedure. This method is also quantitative and results in a final extract amenable to virtually any instrumental analysis. Two HPLC methods were developed for quantitative analysis. The first is a reverse-phase system with variable wavelength W detection. This method is excellent from a quantitative point of view. The second method is a size-exclusion method coupled with dual UV and evaporative light scattering detectors. This method is much faster than the reverse-phase method and allows for qualitative analysis of other components of the waste. For tri-n-octylamine and other degradation products, a GC method was developed and subsequently extended to GUMS. All methods have precision better than 5%. The combination of these methods allows both quantitative analysis of the major solvent components and visualization of any minor components, including breakdown products.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    1
    Citations
    NaN
    KQI
    []