Investigating the Potential of Radar Interferometry for Monitoring Rural Artisanal Cobalt Mines in the Democratic Republic of the Congo

2020 
Greater awareness of the serious human rights abuses associated with the extraction and trade of cobalt in the Democratic Republic of the Congo (DRC) has applied increasing pressure for businesses to move towards more responsible and sustainable mineral sourcing. Artisanal and small-scale mining (ASM) activities in rural and remote locations may provide heightened opportunities to conceal the alleged human rights violations associated with mining, such as: hazardous working conditions, health impacts, child labour, child trafficking, and debt bondage. In this study, we investigate the feasibility of the Intermittent Small Baseline Subset (ISBAS) interferometric synthetic aperture radar (InSAR) method, teamed with high temporal frequency Sentinel-1 imagery, for monitoring ASM activity in rural locations of the “Copperbelt”, the DRC. The results show that the ISBAS descriptive variables (mean, standard deviation, minimum, and maximum) were significantly different (p-value = ≤ 0.05) between mining and non-mining areas. Additionally, a significant difference was found for the ISBAS descriptive variables mean, standard deviation, and minimum between the different mine types (industrial, surface, and tunnels). As expected, a high level of subsidence (i.e., negative ISBAS pixel value) was a clear indicator of mine activity. Trial activity thresholds were set for the descriptive variables mean (-2.43 mm/yr) and minimum (-5.36 mm/yr) to explore an ISBAS approach to active mine identification. The study concluded that the ISBAS method has great potential as a monitoring tool for ASM, with the ability to separate mining and non-mining areas based on surface motion values, and further distinguish the different mine types (industrial, surface, and tunnel). Ground data collection and further development of ISBAS analysis needs to be made to fully understand the value of an ISBAS-based ASM monitoring system. In particular, surrounding the impact of seasonality relative to longer-term trends in ASM activity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    2
    Citations
    NaN
    KQI
    []