Observation of Preferential Pathways for Oxygen Removal through Porous Transport Layers of Polymer Electrolyte Water Electrolyzers

2020 
Summary Understanding the relationships between porous transport layer (PTL) morphology and oxygen removal is essential to improve the polymer electrolyte water electrolyzer (PEWE) performance. Operando x-ray computed tomography and machine learning were performed on a model electrolyzer at different water flowrates and current densities to determine how these operating conditions alter oxygen transport in the PTLs. We report a direct observation of oxygen taking preferential pathways through the PTL regardless of the water flowrate or current density (1- 4 A/cm2). Oxygen distribution in the PTL had a periodic behavior with period of 400 μ m . Computational fluid dynamics model was used to predict oxygen distribution in the PTL showing periodic oxygen front. Observed oxygen distribution is due to low in-plane PTL tortuosity and high porosity enabling merging of oxygen bubbles in the middle of the PTL and also due to aerophobicity of the layer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    5
    Citations
    NaN
    KQI
    []