Modification of dislocation behavior in GaN overgrown on engineered AlN film-on-bulk Si substrate

2013 
The changes that the AlN buffer and Si substrate undergo at each stage of our substrate engineering process, previously shown to lead to a simultaneous and substantial reduction in film crack density and dislocation density in overgrown GaN, are presented. Evidence of ion-implantation assisted grain reorientation for AlN islands coupled with physical isolation from the bulk Si substrate prove to be the dominating driving forces. This is further emphasized with x-ray diffraction analysis that demonstrates a reduction in the in-plane lattice constant of AlN from 3.148 A to 3.113 A and a relative change in rotation of AlN islands by 0.135° with regard to the Si substrate after substrate engineering. Misfit dislocations at the AlN-Si interface and disorder that is normally associated with formation of amorphous SiNx at this interface are considered to be two of the major contributors to dislocation nucleation within overgrown GaN. Following our technique, the disappearance of disorder at the AlN-Si interface ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    3
    Citations
    NaN
    KQI
    []