Potential of erlotinib cyclodextrin nanosponge complex to enhance solubility, dissolution rate, in vitro cytotoxicity and oral bioavailability.

2016 
Abstract The present study was envisaged to evaluate the effect of erlotinib β-cyclodextrin nanosponge (ERL-NS) on the solubility, dissolution, in vitro cytotoxicity and oral bioavailability of erlotinib (ERL). Preliminary studies were conducted to select the optimized stoichiometry concentration of ERL and NS. The drug nanosponge complex comprising of 1:4 proportions of ERL and NS was prepared by freeze drying. ERL-NS formed nanoparticles of 372 ± 31 nm size with narrow size distribution (0.21 ± 0.07 PDI) and high zeta potential (−32.07 ± 4.58 mV). The complexation phenomenon was confirmed by DSC, SEM, PXRD, FTIR, and TEM studies. In vitro dissolution studies revealed an increased dissolution rate (2-folds) with an enhanced dissolution efficiency of the nanosponge complex in comparison to pure drug. In vitro cytotoxicity study and apoptosis assay in pancreatic cell lines (MIA PaCa-2 and PANC-1) indicates the increased toxicity of ERL-NS. Both, quantitative and qualitative cell uptake studies unveiled the higher uptake efficiency of ERL-NS than free drug. ERL-NS showed enhanced oral bioavailability with 1.8-fold higher C max (78.98 ± 6.2 vs. 42.36 ± 1.75 μg/ml), and ∼2-fold AUC 0−∞ (1079.95 ± 41.38 vs. 580.43 ± 71.91), in comparison to pure ERL. Therefore, we conclude that the formation of a complex of nanosponge with ERL is a successful approach to increase its solubility, dissolution and oral bioavailability which may ultimately result in reduction in dose and dose related side-effects.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    73
    Citations
    NaN
    KQI
    []